

WB, IHC 51 kDa Human, Mouse, Rat Rabbit IgG

# BACKGROUND

(AR) Adreneraic receptors mediate the physiological effects of the biogenic amine hormones/neurotransmitters adrenaline and noradrenaline. These catecholamine messengers have important roles in the regulation of diverse physiological systems. Thus, adrenergic receptors are widely distributed throughout the body. ARs can be divided into three main classes, alpha<sub>1</sub>-AR, alpha<sub>2</sub>-AR, and beta-AR, each of which is represented by three subtypes in humans and other mammals (alpha<sub>1A</sub>, alpha<sub>1B</sub>, and alpha<sub>1D</sub>; alpha<sub>2A</sub>, alpha<sub>2B</sub>, and alpha<sub>2C</sub>; beta<sub>1</sub>, beta<sub>2</sub>, and beta<sub>3</sub>). ARs belong to a large family of cell surface receptors that control intracellular second messenger systems by activating guanine nucleotide-binding regulatory proteins (Gproteins). The alpha-adrenergic receptor is the primary adrenergic receptor that causes vasoconstriction with stimulation from an agonist.<sup>1</sup> The alpha<sub>2A</sub>-adrenoceptor (AR) subtype is located both pre- and postsynaptically, mediates adrenaline/noradrenaline functions. The alpha<sub>2</sub> adrenergic receptors activate the  $G_{i \mbox{\tiny o}}$  class of guanine nucleotide binding regulatory proteins (G proteins). The activation of the G protein, in turn, regulates several effectors, including adenylyl (inhibition), cyclase calcium channels (stimulation/inhibition), and potassium channels and H<sup>+</sup>/Na<sup>+</sup> antiporter (stimulation).<sup>2</sup> It was shown that alpha<sub>2</sub> adrenergic receptors play an important role in regulating the neuronal release of norepinephrine through presynaptic feedback inhibition in the locus ceruleus. Therefore, alpha<sub>2</sub> adrenergic autoreceptors may underlie some aspects of the pathogenesis and symptomatic expression of depressive illness.<sup>3</sup> In addition, Among adrenergic receptor subtypes that regulate lipid mobilization, the alpha2-AR is involved in the inhibition of fatty acid mobilization from adipose tissue.4

### References:

1. Ruuskanen, J. O. et al: J. Neurochem. 94:1559-69, 2005

2. Ampatzis, K. et al: J. Comparat. Neurol. 508:72-93, 2008

3. Wang, Z. et al: J. Affect. Disorders 25:191-6, 1992 4. Garenc, C. et al: Mol. Med. 8:88-94, 2002

## **TECHNICAL INFORMATION**

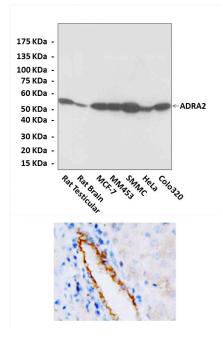
#### Source:

ADRA2 Antibody is a rabbit antibody raised against a short peptide from human ADRA2 sequence.

#### **Specificity and Sensitivity:**

This antibody detects endogenous levels of ADRA2 proteins without cross-reactivity with other family members.

Storage Buffer: PBS and 30% glycerol


#### Storage:

Store at -20°C for at least one year. Store at 4°C for frequent use. Avoid repeated freeze-thaw cycles.

## APPLICATIONS

| Application:                                       | *Dilution:   |
|----------------------------------------------------|--------------|
| WB                                                 | 1:1000       |
| IP                                                 | n/d          |
| IHC                                                | 1:50 - 1:200 |
| ICC                                                | n/d          |
| FACS                                               | n/d          |
| *Optimal dilutions must be determined by end user. |              |

### **QUALITY CONTROL DATA**



Top: Western Blot detection of ADRA2 proteins in various liver tissue and cell lysates using ADRA2 Antibody. Bottom: This antibody stains paraffinembedded rat liver tissue in immunohistochemical analysis.

